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Abstract Data privacy is an important issue in control systems, especially when datasets contain

sensitive information about individuals. In this paper, the authors are concerned with the differentially

private distributed parameter estimation problem, that is, we estimate an unknown parameter while

protecting the sensitive information of each agent. First, the authors propose a distributed stochastic

approximation estimation algorithm in the form of the differentially private consensus+innovations

(DP-CI), and establish the privacy and convergence property of the proposed algorithm. Specifically,

it is shown that the proposed algorithm asymptotically unbiased converges in mean-square to the un-

known parameter while differential privacy-preserving holds for finite number of iterations. Then, the

exponentially damping step-size and privacy noise for DP-CI algorithm is given. The estimate approxi-

mately converges to the unknown parameter with an error proportional to the step-size parameter while

differential privacy-preserving holds for all iterations. The tradeoff between accuracy and privacy of

the algorithm is effectively shown. Finally, a simulation example is provided to verify the effectiveness

of the proposed algorithm.

Keywords Differential privacy, distributed parameter estimation, stochastic approximation.

1 Introduction

When estimating an unknown signal/parameter in a distributed sensor network, each sensor
can produce a local estimate based on its own noisy measurements and the information gathered
from other sensors. In the centralized estimation scenario, all the sensors transmit data to a
fusion center. With the fast development of sensor networks and wireless communications, the

WANG Jimin

School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083,

China. Email: jimwang@ustb.edu.cn.

TAN Jianwei · ZHANG Ji-Feng (Corresponding author)

Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems

Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of

Chinese Academy of Sciences, Beijing 100049, China. Email: jwtan@amss.ac.cn; jif@iss.ac.cn.
∗The work is supported by the National Key R&D Program of China under Grant No. 2018YFA0703800, the

National Natural Science Foundation of China under Grant No. 61877057, and China Post-Doctoral Science

Foundation under Grant No. 2018M641506.
�This paper was recommended for publication by Editor WU Zhengguang.



188 WANG JIMIN · TAN JIANWEI · ZHANG JI-FENG

scale of system is becoming increasingly large, the computation and communication burden
increases rapidly with the system’s size. On the other hand, in the centralized processing,
collecting measurements from all other distributed sensors over the network may be infeasible
in many practical situations due to limited communication capabilities, energy consumptions or
packet losses. Thus, distributed estimation algorithms are developed, which will be more robust,
need fewer communications and allow parallel information processing. Since sensors need only
to exchange information with their own neighbors, distributed estimation has attracted a great
deal of attention[1–12], and has widely applications in collaborative spectral sensing in cognitive
radio systems, target localization in biological networks, fish schooling, bee swarming, and bird
flight in mobile adaptive networks, etc.

However, the communication among agents in such a distributed manner brings about pri-
vacy concerns if the local agent’s training data contains sensitive information such as salary,
medical records, initial states. For example, in biological networks, animals are interested in
moving toward a target (such as a nutrition source). The “home” of the animals is sensitive
for hunters/predators. In traffic networks, the initial location of each vehicle is the driver’s
house, which is sensitive information. Therefore, it is of great importance to protect sensitive
information in multi-agent systems[13]. In the realm of control systems, some privacy-preserving
approaches have recently been proposed[14–19], such as homomorphic encryption[14, 15], adding
artificial noise[16–19], etc.

Among others, differential privacy is a well-known privacy-preserving method and has appli-
cations in many domains such as data mining[20], distributed multiset intersection and union[21],
machine learning[22, 23], distributed optimization[24–27, 39] and so on. Roughly speaking, differ-
ential privacy deliberately releases data and ensures that the participation of a single agent in a
database does not affect the output of data processing substantially. In this case, it is unlikely
in the sense of probability that an eavesdropper could learn each agent’s sensitive information.
The basic idea used by differential privacy is to “perturb” the exact data before releasing them,
which will compromise the system performances[28].

Many important works on differential privacy based control and estimation have been
presented[29–38]. Specifically, [34, 35] studied the differentially private estimation in the central-
ized processing. [36] considered a differentially private distributed stochastic gradient algorithm.
However, the convergence analysis for the proposed algorithm in [36] was not presented. [37]
gave a differentially private distributed stochastic gradient algorithm with connected gossiping
agents, where the input perturbation (adding noise to the sensitive information) is used for
achieving the goal of privacy protection. [38] studied a differentially private algorithm for lin-
ear regression learning in a decentralized fashion, where the t-step privacy-preserving analysis
and estimation error bound were given. However, the estimation error bound is given by O(t)
or O(exp(tα)), 0 ≤ α < 1, which is not reasonable in practice.

In this paper, we study the differentially private distributed parameter estimation problem,
that is, we estimate the unknown parameter and at the same time protect the sensitive infor-
mation of each agent. A new differentially private distributed parameter estimation algorithm
is given, i.e., the DP-CI algorithm. First, a distributed stochastic approximation algorithm is
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provided to simultaneously handle differential privacy requirements and distributed parameter
estimation. The estimate converges to the true parameter in mean-square and the differential
privacy-preserving holds for finite number of iterations. Then, the exponentially damping step-
size and privacy noise for DP-CI algorithm is given to preserve the differential privacy of all
iterations, but the estimate approximately converges to the unknown parameter with an error
proportional to the step-size parameter. The main contributions are given as follows.

1) We introduce the differential privacy into distributed parameter estimation problem,
where each agent’s sensitive information is protected from eavesdropper or the honest-but-
curious agent. The protection level is measured in the sense of ε-differential privacy. For
two different step-sizes and privacy noise forms, the privacy and convergence analysis of the
algorithm are studied, respectively. The existing literature on distributed estimation[4–6, 10, 11]

involves only parameter estimate but without privacy protection mechanisms. In contrast
to [37], here we not only establish the estimate convergence in mean-square but also the mean-
square convergence rate of the proposed estimation algorithm.

2) For a class of step-size with the form of t−γ , 0 < γ ≤ 1, we give the convergence rate of
the DP-CI algorithm when the Tε-differential privacy holds. In practice, it is more reasonable
than the case where the estimation error bound is given by O(t) or O(exp(tα)), 0 ≤ α < 1
in [38].

3) The form of the added noise variances for privacy-preserving is general in this pa-
per. The exponentially damping Laplacian noise given in advance is a special case of this
paper[25, 29, 30, 32, 33]. Moreover, different from the added noise σt being O(t−1) in [26, 27], the
added noise σt in this paper can be O(t−γ), 0 < γ ≤ 1.

2 Preliminaries

2.1 Notations

Throughout this paper, the following standard notations are used. Z ≥ 0 (Z > 0) means
that the symmetric matrix Z is semi-positive definite (positive definite). 1N stands for the
N -dimensional vector with all elements being one. R

n and R
m×n denote, respectively, the n-

dimensional Euclidean space, and the set of all m × n real matrices. ‖x‖ refers to Euclidean
norm of the vector x. I, 0 are identity matrix and zero matrix with appropriate dimensions,
respectively. In addition, diag {A1, A2, · · · , An} stands for a (block) diagonal matrix with
A1, A2, · · · , An in order on the diagonal. The expectation of a random variable X is denoted
by E[X ]. ‖x‖1 denotes the 1-norm of the vector x ∈ R

n, i.e., ‖x‖1 =
∑n

i=1 |xi|. ⊗ denotes the
Kronecker product.

2.2 Graph Theory

In this paper, the communication among agents of a network is modeled as an undirected
graph G = (V , E), where consists of a non-empty node set V = {1, 2, · · · , N} and an edge set
E ⊆ V × V . A = [ai,j ] is the adjacency matrix of G, where ai,j = 1 if (i, j) ∈ E and ai,j = 0,
otherwise. Ni = {j ∈ V , (j, i) ∈ E} denotes the neighborhood of agent i. Here, we assume the
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self-edge (i, i) does not exist. G is called connected if for any pair agents (i1, il), there exists a
path from i1 to il consisting of edges (i1, i2), (i2, i3), · · · , (il−1, il). The Laplacian matrix of G is
defined as L = D−A, where the degree matrix D = diag{∑N

j=1 a1j ,
∑N

j=1 a2j , · · · ,
∑N

j=1 aNj}.

3 Problem Formulation

3.1 Observation Model

Here we consider a linear observation model in a network given by

yi(t) = Hi(t)θ∗ + ωi(t), i ∈ V , (1)

where yi(t) ∈ R
mi is the measurement vector, ωi(t) ∈ R

mi is the zero-mean i.i.d. measurement
noise, and Hi(t) ∈ R

mi×n represents the time-varying measurement matrix of agent i. θ∗ ∈ R
n

is an unknown parameter vector.
As shown in [4–7], to identify system parameter θ∗ in (1), each agent updates its estimate

as follows: xi(t+1) = xi(t)−α(t)
∑

j∈Ni
(xi(t)−xj(t))+α(t)HT

i (t)(yi(t)−Hi(t)xi(t)). During
the iterative process, each agent in the network needs to exchange the estimate xi(t) with
its neighbors. Although there is no need for each agent to share its own data, the risk of
information leakage still exists if the local data contain sensitive information like medical or
financial records. The sensitive information in our setup is {yi(0), yi(1), · · · , yi(T )} for some
T > 0, i ∈ V . Generally, the initial state and the states near that are important for each agent,
for example, the initial position of a vehicle. The adversary could be an outsider who eavesdrops
the exchanging information, or the honest-but-curious agent who follows the iterative process
honestly but tends to infer the sensitive information. We assume that adversary have the
following information: (i) The communication topology of the network; (ii) The exchanging
information among agents. In this case, adversary may steal the sensitive information of the
agents, e.g., model inversion attack method.

In the following, we will design a new distributed parameter estimation algorithm to protect
the sensitive information from potential adversary.

3.2 Differential Privacy

In order to protect the sensitive information from potential adversary, inspired by [34], we
introduce the concepts about differential privacy.

Definition 3.1 (δ-adjacency) Given δ > 0, two vectors Y (t)=[yT
1 (t), yT

2 (t), · · · , yT
N(t)]T

and Y ′(t)=[y′T
1 (t), y′T

2 (t), · · · , y′T
N (t)]T, Y (t) and Y ′(t) are δ-adjacent if there exists some i0 ∈ V

such that
yi(t) = y′

i(t), ∀i 
= i0, ‖yi0(t) − y′
i0(t)‖1 ≤ δ. (2)

Remark 3.2 Definition 3.1 implies that two signal sets are adjacent if only one agent
changes its measurement vector, which is a key component of any private implementation as
it specifies which pieces of sensitive data must be made approximately indistinguishable to
potential adversary.
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Definition 3.3 (Differential privacy) Given ε > 0, a randomized mechanism M is ε-
differential privacy if for any δ-adjacent vectors Y (t) and Y ′(t), and any set of outputs Υ ⊆
Range(M), such that

P{M(Y (t)) ∈ Υ}≤eε
P{M(Y ′(t)) ∈Υ}.

Remark 3.4 Note that the constant ε measures the privacy level of the randomized
mechanism M, i.e., a smaller ε implies a higher privacy level. As pointed out in [34], ε is taken
to be a small constant, e.g., ε ≈ 0.1.

Lemma 3.5 (see [26]) (Adaptive sequential composition) Consider a sequence of mecha-
nisms {Mt}T

t=1, in which the output of Mt may depend on M1, M2,· · · , Mt−1 as described
below:

Mt(D) = Mt(D,M1(D),M2(D), · · · ,Mt−1(D)).

Suppose Mt(·, a1, a2, · · · , at−1) preserves εt-differential privacy for any a1 ∈ range(M1),· · · ,
at−1 ∈ range(Mt−1). Then, the T -tuple mechanism M := (M1,M2, · · · ,MT ) preserves ε-
differential privacy for ε =

∑T
t=1 εt.

Remark 3.6 The worst privacy happens when an adversary applies many queries to
the same sensitive data. If the distributed algorithm runs in an offline way (i.e., each update
depends on all data points over the T iterations), then the offline algorithm suffers the “sum”
of the differential privacy described in Lemma 3.5.

The objective in this paper: We design a fully distributed algorithm to preserve the privacy
of each measurement vector yi(t) and estimate the unknown parameter θ∗, and further analyze
the tradeoff between accuracy and privacy of the algorithm.

4 The DP-CI Algorithm

In this section, we propose a differentially private distributed parameter estimation algo-
rithm, which we term as DP-CI algorithm. The key steps of the DP-CI algorithm are sum-
marized as: (i) Transmit to its neighbors a message that is corrupted with noise (rather than
its internal estimate as in the traditional CI algorithm); (ii) Use the (noisy) messages from
its neighbors to update its internal state. In the following, we give these two steps for the
algorithm: Message passing and estimation update.

Message passing In every iteration of the DP-CI algorithm, each agent i transmits its
current noisy estimate x̃i(t) to each of its neighbors j ∈ Ni. Specifically, agents broadcast
x̃i(t) = xi(t) + ni(t), where xi(t) is the estimate of agent i at time t ≥ 1 for the parameter
vector θ∗, and each element of ni(t) ∈ R

n is the zero-mean i.i.d. Laplacian noise with the
variance of 2σ2

t , i.e., nl
i(t) ∼ Lap(0, σt), l = 1, 2, · · · , n.

Estimation update

xi(t + 1) = x̃i(t) − α(t)
∑

j∈Ni

(x̃i(t) − x̃j(t)) + α(t)HT
i (t)(yi(t) − Hi(t)x̃i(t)), (3)



192 WANG JIMIN · TAN JIANWEI · ZHANG JI-FENG

where α(t) is the step-size of the proposed algorithm. The selection of α(t) to ensure the
convergence and differential privacy of the proposed algorithm will be discussed in more details
later.

Remark 4.1 Different from the traditional distributed parameter estimation algorithm
(see [4–6, 10, 11]), to ensure the ε-DP of the DP-CI algorithm, we add the Laplacian noise to
the local estimation xi(t) when broadcast it.

4.1 Privacy Analysis

In this subsection, we will show the ε-differential privacy for each iteration of the DP-
CI algorithm. In the context of differential privacy, the corresponding mechanism for the
DP-CI algorithm maps D = {Y (t), t ∈ N} to a sequence of messages {X̃(t), t ≥ 1}. This
method guarantees differential privacy and is known as output perturbation[34]. Next, we
derive conditions on the noise variances under which each iteration of the proposed algorithm
satisfies ε-differential privacy.

In differential privacy, a key quantity determines how much noise to be added at each
iteration, which is referred to as the sensitivity of the proposed algorithm.

Definition 4.2 (see [23]) (Sensitivity) For given δ-adjacency relation (2), the sensitivity
of an output map g at each iteration t is defined as

Δ(t) = sup
{Y (t),Y ′(t):Adj(Y (t),Y ′(t))}

‖g(Y (t)) − g(Y ′(t))‖1.

Remark 4.3 The sensitivity of an output map g captures the magnitude by which a
single agent’s data can change the output map g in the worst case. For our proposed algorithm,
g refers to the output map from Y (t) to X(t) = [xT

1 (t), xT
2 (t), · · · ., xT

N (t)]T.

Lemma 4.4 For given δ-adjacency relation (2), the sensitivity of the DP-CI algorithm at
each iteration t satisfies Δ(t) ≤ α(t − 1)δHmax(t − 1), where Hmax(t − 1) = maxi∈V{S(Hi(t −
1))}, S(Hi(t − 1)) :=

∑mi

j=1

∑n
k=1 |(Hi(t − 1))jk|.

Proof For given δ-adjacency relation (2), from (3) it follows that ‖xi(t)− x′
i(t)‖1 = ‖α(t−

1)HT
i (t−1)(yi(t−1)−y′

i(t−1))‖1 ≤ α(t−1)δS(Hi(t−1)). By Definition 4.2, for two δ-adjacent
data Y (t−1) and Y ′(t−1), it follows that Δ(t) = sup{Y (t−1),Y ′(t−1):Adj(Y (t−1),Y ′(t−1))} ‖X(t)−
X ′(t)‖1 ≤ maxi∈V ‖xi(t) − x′

i(t)‖1 ≤ α(t − 1)δHmax(t − 1).

Theorem 4.5 For given ε > 0, each iteration of the DP-CI algorithm is ε-DP if σt

satisfies

σt ≥ α(t − 1)
ε

δHmax(t − 1). (4)

Proof Let Y (t), Y ′(t) ∈ R
m, m =

∑N
i=1 mi be the δ-adjacent measurement vector, X(t) ∈

R
nN be the estimate vector at time t, X̃(t) = [x̃T

1 (t), x̃T
2 (t), · · · , x̃T

N (t)]T ∈ R
nN be the broadcast

vector at time t, respectively. M(·) denotes the process from sensitive data Y (t) to broadcast
data X̃(t + 1). In order to preserve ε-DP, Y (t) and Y ′(t) generate identical observation, i.e.,
for any t ≥ 1, X̃(t) and X̃ ′(t) are in the same observation set.
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First, for any given t > 0, we compute the probability of M(Y (t)) = X̃(t),

Pr
(
M(Y (t)) = X̃(t)

)
= Pr(X̃(t + 1)|X̃(t), Y (t))

= Pr(n(t) = X̃(t) − X(t)), (5)

where n(t) = [nT
1 (t), nT

2 (t), · · · , nT
N (t)]T ∈ R

nN .
Similarly,

Pr
(
M(Y ′(t)) = X̃(t)

)
= Pr(n(t) = X̃(t) − X ′(t)). (6)

Then, as each element of ni(t) is also mutually independent, from (5) and (6) it follows that
the ratio of corresponding probability density functions satisfies

f(M(Y (t)) = X̃(t))

f(M(Y ′(t)) = X̃(t))
=

f(n(t) = X̃(t) − X(t))

f(n(t) = X̃(t) − X ′(t))

=
exp (||X̃(t) − X(t)||1/σt)

exp (||X̃(t) − X ′(t)||1/σt)
≤ exp (||X(t) − X ′(t)||1/σt)

≤ exp
(

Δ(t)
σt

)

.

Since ε ≥ Δ(t)
σt

, we have f(M(Y (t))=X̃(t))

f(M(Y ′(t))=X̃(t)
)≤eε. Thus, for any measurable set of Υ ⊆ Range(M(Y (t))),

it holds

Pr(M(Y (t)) ∈ Υ) =
∫

Υ

f(M(Y (t)) = Z)dZ

≤ eε

∫

Υ

f(M(Y ′(t)) = Z)dZ

= eε Pr(M(Y ′(t)) ∈ Υ).

Therefore, according to Definition 3.3, the theorem is obtained.

Remark 4.6 Different from the exponentially damping Laplacian noise given in advance
(see [25, 29, 30, 32, 33]), the form of the privacy noise given in this paper is more general and
only needs to satisfy σt = α(t−1)

ε δHmax(t − 1), e.g., σt = 1
tγ , 1

2 < γ ≤ 1. Specifically, if we set
the zero-mean i.i.d. Laplacian noise n(t) with the variance of 2σ2

t , where σt = cqt, 0 < c < 1,
0 < q < 1, the results in Theorem 4.5 still hold. However, as shown below, the step-size in this
form cannot guarantee the mean-square convergence of the DP-CI algorithm.

Remark 4.7 In Theorem 4.5, we give the relationship between the scale parameter σt of
the added noise, the step-size α(t) and the privacy index ε. From (4) it follows that the scalar
parameter σt of the added noise is inversely proportional to privacy index ε. In other words,
each agent preserves stronger privacy when the added noise is more dispersive. In order to
preserve ε-DP and meanwhile make parameter estimation as accurate as possible, we will take
σt = α(t−1)

ε δHmax(t − 1) in the following.
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To facilitate convergence analysis of (3), we define the stacked vectors and matrices as follows

Θ∗ = 1N ⊗ θ∗, H(t) = diag{HT
1 (t), HT

2 (t), · · · , HT
N (t)},

X(t)=
[
xT

1 (t), xT
2 (t), · · · , xT

N (t)
]T

, Y (t)=
[
yT
1 (t), yT

2 (t), · · · , yT
N (t)

]T
,

ω(t)=
[
ωT

1 (t), ωT
2 (t), · · · , ωT

N (t)
]T

, n(t)=
[
nT

1 (t), nT
2 (t), · · · , nT

N(t)
]T

.

Now, we rewrite (3) in the following compact form:

X(t + 1) = X(t) − α(t)(L ⊗ In)X(t) + α(t)H(t)ω(t)
+α(t)H(t)HT(t)(Θ∗ − X(t)) + n(t)
−α(t)(L ⊗ In + H(t)HT(t))n(t). (7)

In order to obtain the performance analysis of the DP-CI algorithm, we make the following
assumptions:

A1) The graph is connected.
A2) There exist positive numbers γ0 > 0, η0 > 0 such that η0I ≤ G(t) :=

∑N
i=1 HT

i (t)Hi(t) ≤
γ0I hold for all t ∈ N.

A3) {ω(t), t ≥ 0} is with σ2
ω � supt≥0 E[‖ω(t)‖2] < ∞.

Next, we will show the tradeoff between accuracy and privacy of the algorithm with different
forms of step-size and privacy noise.

4.2 Convergence Analysis with Stochastic Approximation-Type Step-Size

In this subsection, we adopt the stochastic approximation-type step-size in the DP-CI algo-
rithm, i.e., the step-size sequence {α(t), t ≥ 0} satisfies the following assumption.

A4) The step-size {α(t), t ≥ 0} satisfies

α(t) > 0,

∞∑

t=0

α(t) = ∞, lim
t→∞α(t) = 0, α(t + 1) = O(α(t)).

Remark 4.8 One example of the step-size sequence {α(t), t ≥ 0}, which satisfies As-
sumption A4), can be chosen as α(t) = 1

tγ , 0 < γ ≤ 1.

Before giving the main results, we first introduce two lemmas.

Lemma 4.9 (see [4]) Under Assumptions A1) and A2), L⊗ In + H(t)HT(t) is a positive
definite symmetry matrix for all t ∈ N. Furthermore, there exist a positive definite matrix M ∈
R

Nn×Nn and a sufficiently large integer T , such that α(t)M < α(t)(L ⊗ In + H(t)HT(t)) < I,

for any t > T .

Lemma 4.10 (see [40]) Let {V (t), t = 0, 1, · · · }, {
(t), t = 0, 1, · · · }, and {q(t), t =
0, 1, · · · } be real sequences, satisfying 0 < q(t) ≤ 1, 
(t) ≥ 0, t = 0, 1, · · · , ∑∞

t=0 q(t) = ∞,
limt→∞

�(t)
q(t) = 0, and V (t+1)≤(1− q(t))V (t)+
(t). Then, lim supt→∞ V (t) ≤ 0. Particularly,

if V (t) ≥ 0, t = 0, 1, · · · , then limt→∞ V (t) = 0.

In the following theorem, we will show how the privacy index ε affect the convergence rate
of the DP-CI algorithm when α(t) = 1

tγ , 0 < γ ≤ 1.
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Theorem 4.11 Suppose Assumptions A1)–A3) hold, α(t) = 1
tγ , σt = δHmax(t−1)

ε(t−1)γ , 0 < γ ≤
1. Then, the convergence rate of the DP-CI algorithm is given as follows.

(i) When 0 < γ < 1, there holds
∑

i∈V E‖xi(t) − θ∗‖2 = O
(

1
ε2tγ

)
.

(ii) When γ = 1, there holds

∑

i∈V
E‖xi(t) − θ∗‖2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

O

(
1

ε2tb0

)

, b0 < 1,

O

(
lnt

ε2t

)

, b0 = 1,

O

(
1

ε2t

)

, b0 > 1,

where b0 is a constant such that 0 < b0 ≤ min{λ2(L), η0}.
Proof Let δ(t) = X(t)−Θ∗ be the parameter estimation error. Then, from (L⊗ In)Θ∗ = 0

and (7), we have

δ(t + 1)=
[
I − α(t)(L ⊗ In + H(t)HT(t))

]
δ(t) + n(t)

+α(t)H(t)ω(t) − α(t)(L ⊗ In + H(t)HT(t))n(t). (8)

Let V (t) = ‖δ(t)‖2. Then, from (8) it follows that

V (t + 1) = δT(t)ΓT
0 Γ0δ(t) + 2δT(t)ΓT

0 Γ1 + ‖Γ1‖2, (9)

where Γ0 =
[
I−α(t)(L⊗In+H(t)HT(t))

]
, Γ1 =n(t)+α(t)H(t)ω(t)−α(t)(L⊗In+H(t)HT(t))n(t).

By [41], Theorem 2.8, from Assumption A1) if follows that L has a unique eigenvalue zero,
and λ2(L) > 0. Then, from Assumption A2) and Lemma 4.9, there exists a constant b0 > 0
such that E

[L⊗ In + H(t)HT(t)
]

> b0I and

E
[
δT(t)ΓT

0 Γ0δ(t)
] ≤ [

1 − 2b0α(t) + Γ2α
2(t)

]
V (t), (10)

where Γ2 = 2‖L⊗ In‖2 + 2γ2
0 . Since ω(t) and n(t) are the zero-mean noise, we have E

[
ω(t)

]
=

E
[
n(t)

]
= 0, which further implies that

E
[
δT(t)ΓT

0 Γ1

]
= 0. (11)

In addition, since the distribution of ω(t) and n(t) is independent, by the Cauchy-Schwarz
inequality we have

E
[‖Γ1‖2

] ≤ 3E[‖n(t)‖2] + 3α2(t)‖H(t)‖2
E[‖ω(t)‖2]

+3α2(t)‖(L ⊗ In + H(t)HT(t))‖2
E[‖n(t)‖2]

≤ 3E[‖n(t)‖2] + 3γ0α
2(t)E[‖ω(t)‖2]

+3α2(t)‖(L ⊗ In + γ0I)‖2
E[‖n(t)‖2].

This together with (9)–(11) leads to

E
[
V (t + 1)

] ≤ [
1 − 2b0α(t) + Γ2α

2(t)
]
E
[
V (t)

]
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+3E[‖n(t)‖2] + 3γ0α
2(t)E[‖ω(t)‖2]

+3α2(t)‖(L ⊗ In + γ0I)‖2
E[‖n(t)‖2]. (12)

When α(t) = 1
tγ , 0 < γ ≤ 1, by (12) there exist t > t0 and β > 0 such that −2b0α(t) +

Γ2α
2(t) ≤ − b0

tγ , 3(1 + α2(t)‖(L ⊗ In + γ0I)‖2)E[‖n(t)‖2] + 3γ0α
2(t)E[‖ω(t)‖2] ≤ β

ε2t2γ . Then,
we have E

[
V (t + 1)

] ≤ [
1 − b0

tγ

]
E
[
V (t)

]
+ β

ε2t2γ , as t > t0. Thus, iteratively we have

E
[
V (t + 1)

] ≤
t∏

k=t0

[

1 − b0

kγ

]

E
[
V (t0)

]
+

t−1∑

l=t0

t∏

k=l+1

(

1 − b0

kγ

)
β

ε2l2γ
+

β

ε2t2γ
. (13)

Note that
∏t

k=t0

[
1 − b0

kγ

]
= exp

( ∑t
k=t0

log(1 − b0
kγ )

)
= O

(
exp

( − ∑t
k=t0

b0
kγ

))
. Then, we will

discuss the above equation for γ = 1 and 0 < γ < 1, respectively.
When γ = 1, it is obtained that

t∏

k=t0

[

1 − b0

kγ

]

= O

(

exp
(

−
t∑

k=t0

b0

k

))

= O

(

exp
(

− b0log
t

t0

))

= O

(
1
tb0

)

. (14)

From (13) and (14) it follows that E
[
V (t + 1)

]
= O

(
1

tb0

)
+ O

( ∑t−1
l=t0

( l
t )

b0 β
ε2l2

)
+ O( β

ε2t2 ) =
O

(
exp

(−b0log t
t0

))
+O

(
1

tb0

∑t−1
l=t0

β
ε2l2−b0

)
+O( β

ε2t2 ) = O
(

1
tb0

)
+O

(
1

tb0

∑t−1
l=t0

β
ε2l2−b0

)
+O( β

ε2t2 ).
By

∑t−1
l=t0

β
ε2l2−b0 ≤ ∫ t

t0−1
β

ε2x2−b0 dx, we have

t−1∑

l=t0

β

ε2l2−b0
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

O

(
1
ε2

)

, b0 < 1,

O

(
lnt

ε2

)

, b0 = 1,

O

(
1

ε2t1−b0

)

, b0 > 1.

Thus, the results hold for γ = 1.
When 0 < γ < 1, we have

∏t
k=t0

[
1 − b0

kγ

]
= O

(
exp

( − ∑t
k=t0

b0
kγ

))
= O

(
exp

( − b0
1−γ [(t +

1)1−γ − t1−γ
0 ]

))
. Note that for large enough t0 and l ≥ t0, (1 − b0

lγ )−1 ≤ 2. Then, from (13) it
follows that

E
[
V (t + 1)

]

≤
t∏

k=t0

[

1 − b0

kγ

]

E
[
V (t0)

]
+

t−1∑

l=t0

t∏

k=l+1

(

1 − b0

kγ

)
β

ε2l2γ
+

β

ε2t2γ

≤
t∏

k=t0

[

1 − b0

kγ

]

E
[
V (t0)

]
+ 2

t−1∑

l=t0

t∏

k=l

(

1 − b0

kγ

)
β

ε2l2γ
+

β

ε2t2γ

= O

(

exp
(

− b0

1 − γ
(t + 1)1−γ

))

+ O

(
1

ε2t2γ

)

+ O

( t−1∑

l=t0

exp
(

− b0

1 − γ
(t + 1)1−γ

)

×exp
(

b0

1 − γ
l1−γ

)
β

ε2l2γ

)

. (15)
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Note that for large t0, γ

b0t1−γ
0

< 1
2 . Then, we have

t−1∑

l=t0

exp
(

b0

1 − γ
l1−γ

)
β

ε2l2γ

≤
∫ t

t0

exp
(

b0

1 − γ
l1−γ

)
β

ε2l2γ
dl

=
1
b0

∫ t

t0

β

ε2lγ
d

(

exp
(

b0

1 − γ
l1−γ

))

=
1
b0

β

ε2lγ

(

exp
(

b0

1 − γ
l1−γ

))∣
∣
∣
∣

t

t0

− β

ε2b0

∫ t

t0

exp
(

b0

1 − γ
l1−γ

)

d

(
1
lγ

)

=
1
b0

β

ε2lγ

(

exp
(

b0

1 − γ
l1−γ

))∣
∣
∣
∣

t

t0

+
γ

b0

∫ t

t0

1
l1−γ

exp
(

b0

1 − γ
l1−γ

)
β

ε2l2γ
dl

≤ 1
b0

β

ε2tγ

(

exp
(

b0

1 − γ
t1−γ

))

+
γ

b0t
1−γ
0

∫ t

t0

exp
(

b0

1 − γ
l1−γ

)
β

ε2l2γ
dl

≤ 1
b0

β

ε2tγ

(

exp
(

b0

1 − γ
t1−γ

))

+
1
2

∫ t

t0

exp
(

b0

1 − γ
l1−γ

)
β

ε2l2γ
dl.

Hence,
∑t−1

l=t0
exp( b0

1−γ l1−γ) β
ε2l2γ = O( 1

ε2tγ (exp( b0
1−γ t1−γ))). From (15) it follows that E[V (t +

1)] = O( 1
ε2tγ ). Thus, the proof is completed.

Remark 4.12 A differentially private decentralized algorithm for linear regression learn-
ing is studied in [38], where the t-step privacy-preserving analysis and estimation error bound
were given. However, the estimation error bound is given by O(t) or O(exp(tα)), 0 ≤ α < 1,
which is not reasonable in practice. Moreover, Theorem 4.11 shows that the privacy index ε

affects the convergence rate of the algorithm in the form of O( 1
ε2 ), and the convergence rate

of the proposed algorithm is invariant with respect to the amount of added noise as goes to
infinity.

Next, we will establish the asymptotic unbiasedness mean-square convergence of the DP-CI
algorithm by using the stochastic approximation-type step-size conditions[5], which is given as
follows.

Theorem 4.13 If Assumptions A1)–A4) hold, and σt = α(t−1)
ε δHmax(t − 1), then the

estimate sequence {xi(t)} given by (3) is asymptotically unbiased mean-square convergence to
the true parameter θ∗.

Proof By taking expectation on both sides of (8), and ω(t), n(t) are zero-mean noise, it is
obtained that

E[δ(t + 1)]=[I−α(t)(L ⊗ In+H(t)HT(t))]E[δ(t)]. (16)

By Lemma 4.9 and taking norm operator on both sides of (16), it is obtained that

‖E
[
δ(t + 1)

]‖ ≤ (1 − α(t)m)‖E
[
δ(t)

]‖, ∀t > T, (17)

where m=λmin(M). Since α(t)→0 (Assumption A4)), there exists t0 such that α(t0) ≤ 1
λmax(M) ,

∀t > t0. Continuing the recursion in (17), we have ‖E[δ(t)]‖ ≤ (
∏t−1

j=t0
(1 − α(j)m))‖E[δ(t0)]‖,
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t ≥ t0. Then, from the inequality 1 − a ≤ e−a, 0 ≤ a ≤ 1, it is obtained that ‖E[δ(t)]‖ ≤
e−m

∑ t−1
j=t0

α(j)‖E[δ(t0)]‖. From m > 0 and the sum of the step-size to infinity, it follows that
limt→∞ ‖E[δ(t)]‖ = 0. Thus, the estimate sequence {xi(t)} given by (3) is asymptotically unbi-
ased with respect to the true parameter θ∗, i.e., limt→∞ E[xi(t)] = θ∗, i ∈ V .

By Assumption A3) and σt = α(t−1)
ε δHmax(t − 1), from (12) it follows that

E
[
V (t + 1)

]

≤ [
1 − 2b0α(t) + Γ2α

2(t)
]
E
[
V (t)

]

+α2(t − 1)
(

6Nnδ2H2
max(t − 1)
ε2

)

+3α2(t)
(

γ0σ
2
ω + α2(t − 1)‖(L ⊗ In+γ0I)‖2 2Nnδ2H2

max(t − 1)
ε2

)

. (18)

Noting that b0 > 0, limt→∞ α(t) = 0, there exists t0 > 0, such that Γ2α(t) ≤ b0, and 2b0α(t) ≤
1, ∀t > t0. Then, from Assumption A4) it follows that

0 ≤ 1 − 2b0α(t) + Γ2α
2(t) < 1, ∀t > t0,

∞∑

t=t0

[2b0α(t) − Γ2α
2(t)] ≥ b0

∞∑

t=t0

α(t) = ∞,

lim
t→∞

1
2b0α(t) − Γ2α2(t)

(
6α2(t − 1)Nnδ2H2

max(t − 1)
ε2

+3α2(t)
(

γ0σ
2
ω + α2(t − 1)‖(L ⊗ In + γ0I)‖2 × 2Nnδ2H2

max(t − 1)
ε2

))

= 0.

This together with (18) and Lemma 4.10 implies the results of the theorem.

Remark 4.14 From Theorem 4.13 it follows that the proposed algorithm is noise-resilient
and provably convergent. However, as shown in [25, 26, 29, 30, 32, 33], the accuracy of the
system performance is compromised by the added noise due to differential privacy.

According to Lemma 3.5, the privacy guarantee becomes weaker when t becomes larger. In
particular, if the privacy-preserving in all iterations is considered, then the total privacy index
will be ∞, which means that there is no privacy guarantee anymore. Therefore, when stochastic
approximation-type step-size is used, the proposed algorithm is effective for differential privacy
in finite number of iterations, which is consistent with Theorem 1 of [23]. The details are given
in the following theorem.

Theorem 4.15 (Total privacy leakage) For given ε, T > 0, the DP-CI algorithm is εT -DP
after T -times iteration.

In the following, we will properly choose the step-size and added privacy noise to achieve
the privacy-preserving for all iterations.

4.3 Convergence Analysis with an Exponentially Damping Step-Size

In this subsection, we suppose the form of the step-size is α(t) = cqt+1, where c > 0, 0 < q <

1[29–33]. A similar result to Theorem 4.13 on the convergence property can also be established.
However, instead of achieving exact mean-square convergence, the estimate of each agent i
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approximately converges to the unknown parameter with an error proportional to the step-size
parameters c, q. The following theorem formally states the result.

Theorem 4.16 Suppose Assumptions A1)–A3) hold, and σt = cptδHmax(t − 1), α(t) =
cqt+1, where 0 < c <

‖L⊗In‖2+γ2
0

b0
, p ∈ (q, 1). Then, the estimate sequence xi(t) of the DP-CI

algorithm satisfies

lim
t→∞ E

[
V (t)

] ≤ e
2b0c(1+q)−(2‖L⊗In‖2+2γ2

0)c2

1−q2
[‖δ(0)‖2

]
+

c2(6Nnδ2H2
max(t − 1))

1 − p2
+

3c2q2γ0σ
2
ω

1 − q2

+
3c4q2(‖(L ⊗ In + γ0I)‖2(2Nnδ2H2

max(t − 1))
1 − q2p2

.

Proof Following the same arguments as in Theorem 4.13. From (12) it follows that

E
[
V (t + 1)

]

≤ [
1 − 2b0cq

t+1 + (2‖L ⊗ In‖2 + 2γ2
0)c2q2t+2

]
E
[
V (t)

]

+c2p2t(6Nnδ2H2
max(t − 1)) + 3c2q2t+2(γ0σ

2
ω

+c2p2t‖(L⊗ In + γ0I)‖2(2Nnδ2H2
max(t − 1)).

Iterating the above inequality, it is obtained that

E
[
V (t)

]

≤
t∏

ι=0

[
1 − 2b0cq

ι + (2‖L ⊗ In‖2 + 2γ2
0)c2q2ι

]
V (0)

+
t−2∑

�=0

(
c2p2�(6Nnδ2H2

max(t − 1)) + 3c2q2�+2(γ0σ
2
ω

+c2p2�‖(L⊗ In + γ0I)‖2(2Nnδ2H2
max(t − 1))

)

×
t−1∏

ι=�+1

[
1 − 2b0cq

ι+1 + (2‖L ⊗ In‖2 + 2γ2
0)c2q2ι+2

]
+ c2p2t−2(6Nnδ2H2

max(t − 1))

+3c2q2t(γ0σ
2
ω + c2p2t−2‖(L ⊗ In + γ0I)‖2(2Nnδ2H2

max(t − 1)). (19)

By utilizing 1 − x ≤ e−x, and when t → ∞, we have

∞∏

ι=0

[
1 − 2b0cq

ι + (2‖L ⊗ In‖2 + 2γ2
0)c2q2ι

] ≤ e
∞∑

ι=0
(2b0cqι−(2‖L⊗In‖2+2γ2

0)c2q2ι)

= e
2b0c(1+q)−(2‖L⊗In‖2+2γ2

0)c2

1−q2 . (20)

From c <
‖L⊗In‖2+γ2

0
b0

it follows that 0 < 1 − 2b0cq
t + (2‖L ⊗ In‖2 + 2γ2

0)c2q2t < 1. Therefore,
∏t−1

ι=�+1

[
1 − 2b0cq

ι + (2‖L ⊗ In‖2 + 2γ2
0)c2q2ι

]
< 1 holds. Furthermore, from (19) and (20) it

follows that

lim
t→∞ E

[
V (t)

] ≤ e
2b0c(1+q)−(2‖L⊗In‖2+2γ2

0)c2

1−q2
[‖δ(0)‖2

]
+

c2(6Nnδ2H2
max(t − 1))

1 − p2
+

3c2q2γ0σ
2
ω

1 − q2

+
3c4q2(‖(L ⊗ In + γ0I)‖2(2Nnδ2H2

max(t − 1))
1 − q2p2

.

The proof is completed.



200 WANG JIMIN · TAN JIANWEI · ZHANG JI-FENG

Theorem 4.17 (Total privacy leakage) For given 0 < q < p < 1, the DP-CI algorithm is
p

p−q -DP after all iterations.

Proof Note that the privacy index of the DP-CI algorithm at each iteration is εt = ( q
p )t.

Then, according to Lemma 3.5, the results can be obtained.

5 Simulation Example

In this section, we provide a numerical simulation to testify the effectiveness of distributed
estimator based on the DP-CI algorithm proposed in this paper. Let N = 5, the adjacency
matrix of the network is A = [0, 1, 0, 1, 0; 1, 0, 1, 0, 1; 0, 1, 0, 1, 0; 1, 0, 1, 0, 1; 0, 1, 0, 1, 0], see Fig-
ure 1. The true parameter vector is θ∗ = [−1, 1]T, the observation matrices and the initial
parameter estimates of these agents are chosen as: H1(t) = [1 + sin(t), 0], H2(t) = [1 − cos(t),
0], H3(t) = [0, 1 + cos(t)], H4(t) = [1, 1 − sin(t)], H5(t) = [1, 0.5 sin(t)], xi(0) = [0, 0.4],
i = 1, 2, · · · , 5.

1 4 

2 

3 

5 

Figure 1 undirected interaction topology

The noises ωi(t) of agents are spatially independent white noises with uniform distribution
on [−0.2, 0.2].

First, we take the step-size α(t) = 2
t+2 , the privacy index ε = 0.8 and δ = 0.2. From (4) it

follows that the scalar parameter σt of the added noises ni(t) is 3
2(t+1) . Further, if we set the

privacy index ε = 0.4, then from (4) it follows that the scalar parameter σt of the added noises
ni(t) is 3

t+1 . Under the above setting, simulation result of the proposed algorithm with two pri-
vacy indices is given in Figure 2. As shown in Figure 2, the asymptotically unbiased estimate of
the unknown parameter in mean-square is achieved by using the stochastic approximation-type
step-size, but differential privacy-preserving holds for finite number of iterations. In addition,
comparing (a) and (b) in Figure 2, we find that the smaller the privacy index (higher the privacy
level), the slower the convergence rate of the algorithm.

Second, we take the step-size α(t) = 0.4t+1, δ = 0.2, and the scalar parameter σt of the
added noises ni(t) is 0.6 × 0.8t. From Theorem 4.17 it follows that the total privacy index
is 2. As shown in Figure 3, the estimate sequence does not converge in mean-square to a
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common value by using the exponentially damping step-size and privacy noises, but differential
privacy-preserving holds for all iterations.

Based on the above analysis, the tradeoff between accuracy and privacy of the algorithm is
shown, which is consistent with the theoretical analysis.

x i
x i

(a) ε = 0.8

x i
x i

(b) ε = 0.4

Figure 2 Trajectories of the estimates by a stochastic approximation-type step-size
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x i
x i

Figure 3 Trajectories of the estimates by an exponentially damping step-size

6 Conclusion

In this paper, the differentially private distributed parameter estimation has been studied.
To protect the sensitive information of each agent and estimate the unknown parameter, a DP-
CI algorithm has been designed. First, by using the stochastic approximation-type step-size
conditions, the estimate sequence convergence in mean-square is guaranteed. The Tε-differential
privacy and mean square convergence rate of the proposed algorithm are characterized. Then,
the exponentially damping step-size and privacy noise for the DP-CI algorithm is given, which
can ensure that the differential privacy-preserving holds for all iterations. The tradeoff between
accuracy and privacy of the algorithm has been shown. Finally, a simulation example is given to
verify the effectiveness of the proposed algorithm. We have found that it is not straightforward
to extend the same techniques to differentially private resilient distributed parameter estimation
when some agents are faulty, which makes designing differentially private resilient distributed
parameter estimation algorithm a valuable and interesting future research direction.
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